w University of : _
Nottingham "

P
UK | CHINA | MALAYSIA

,‘""-(.
. Tt /7
a Ta) R
> < Ea : :
+ Lecture
- ‘l,l‘ _’\ l(_ ¥ 1

o Comp uter Architecture,
- Digital input/output, and
- Timer/counters

Mechatronics
MMME3085

Module Convenor — Abdelkhalick Mohammad

B University of _ :
I Nottingham | Qbjectives of lecture

e To introduce computer architecture and understand what
goes on in a computer

e To introduce the hardware and implications for software
required to interface a computer to electromechanical
systems

e To demonstrate the way that a simple parallel interface is
implemented in Arduino

e To introduce the concept of timer/counters and their uses
in the Arduino

g

e

University of

Nottingham

UK | CHINA | MALAYSIA

A typical Mechatronics System

Digital
output
inter-
face;
timer

Buses
n

computer

Program

e.g., in C

Digital
input
inter-
face;
counters

Digital Analogue 7 s 8 s 9
signal ional .
| DAC e » Electronic
N hardware
Digital
signal 4
Actuators
6 |
oL Mechanical
system
1
Sensors
Digital Analogue I
signal signal v
I ADC |+ Electronic
J hardware
Digital signal

University of

Nottingham

UK | CHINA | MALAYSIA

B University of :
!'1 Nottingham | Introduction

e Want to:
e transfer data from to an
e take data from (input device) into the computer

e Data can be:

(series of pulses - high or low for 1 or O, in principle only 1
or 2 wires plus ground needed)

(1 wire per bit, usually 8 per "port")

e Concentrate on parallel data at present time
e Need to know what we can connect to

ty of

VS

Nottingham

UK | CHINA | MALAYSIA

» University of .
I Wigan Types of signal

e Analogue: signal proportional to physical value
e Varying or
e Infinitely variable, resolution limited by:

e Resolution of measurement device e.qg., ADC (analog-
to-digital converter)

e Noise

e Digital: binary number repr'g physical value
e Two states (0/1 represented as Ov/5v etc)
e Serial or parallel (consider only parallel)
e Resolution limited by number of bits

» University of .
I Wigan Types of signal

e Trains of pulses:
e \/oltage alternates between two levels (square wave).

e Frequency of the pulse train or the number of pulses
transmitted

e To have an up/down count we need two sets of pulses
1/4 phase out of step (quadrature pulses) and a
suitable decoder

e Usually defined as a digital signal (interested in “rate”
rather than “state”)

ive[sitg of
Nottingham

Un

UK | CHINA | MALAYSIA

B University of - :
r \ottngham | Digital signals

e So far, we have talked about digitals signals having:
e A certain number of bits (8, 16, 24 etc.)
e Only two levels: Ov or 5v

e This last point is not strictly
true...

e It will work but isn’t the
full story

B University of - :
r notmgnam | Digital signals

e Digital lines on a Data Acquisition (DAQ) device accept
and generate (TTL)
compatible signals

+50V = === == -
high
+20V — == = = = =
indeterminate
+08V = = = = = = =
0V low

Definition of a TTL Signal

8 University of - .
»it Nottingham | Bigjtal signals: TTL

e Actual voltage levels depend on the circuitry we use to
generate the digital signal

e Most common (and the one used in your labs) is Transistor-
Transistor Logic (TTL)

e Traditional, for actual circuits
e Still used as a standard for i/o levels

TTL

s : A ble TTLG G
Description | Voltage level input Signal Lovels. Output Signal Levels Hi Hi
Low input < 0.8v 5V V' | | Appr %
ioh i | e AL 27V Y #

High input > 2V th*l { o IV g7y 2V
Lowoutput < 0.4v i 0.4V /R g g
. . 08V = 05V 4 > !

High output > 2.7-3.4v (typical) o ov Low —[I ¢ Lo =

Output Input

» University of - .
,.i'.", Nottingham | Bigjtal signals: Other standards

e Be aware that there are for logic
levels, relating to other types of circuitry
e e.g., (complementary metal oxide semiconductor)

now standard approach: some High-speed CMOS (HC) use
significantly different levels

e Fortunately, can get CMOS circuits that accept TTL
voltages for input (HC Transistor series)

e Other levels sometimes used e.qg., Ov/24v
e 3.3V is being increasingly widely used

I" University of - .
Lt Nottingham | DBjgjtal signals: Other standards

UK | CHINA | MALAYSIA

TTL (5V) CMOS(5V)

CMOS (3.3V)

2.3V

1V

0.4V
Output Input Input Input Output

g

e

University of

Nottingham | DBjgjtal signals: Other standards

UK | CHINA | MALAYSIA

e There can be incompatibilities between different logic
families even if supplied by same voltage...

TTL
2.7V v
0.4V v

Output Input Output Input

TTL CMOS(5V)

27V 3.5V

2V

1.5V

0.8V a4y

8 University of - . .
!.1 Nottingham | Digjtal signals: Converting between standards

UK | CHINA | MALAYSIA

e Not directly compatible! Will probably work for driving low
power TTL input from 3.3V logic, but won’t work for driving
some 5V CMOS:

TTL CMOS(5V)

CMOS
(3.3V)

CMOS
(3.3V)

3V X
0.5V v

Output 16 Input

3V 3.5V

1.5V
0.5V

Output

B University of - . :
it Nottingham | Digjtal signals: Converting between standards

UK | CHINA | MALAYSIA

e And driving 3.3V logic input from 5V logic (CMOS or TTL)
may well burn it out!

CMOS (5V)

4.95V % O

CMOS (3.3V)

ty of

VS

Nottingham

UK | CHINA | MALAYSIA

University of

Nottingham | Digjtal signals: Converting between standards

e Example: the Arduino Due is based on different technology
(ARM) from the Atmega 328 and 2560

e [t is based on 3.3 V logic
e But you may want to use it with 5V devices

» University of - . .
!", Nottingham | Bigital signals: Converting between standards

UK | CHINA | MALAYSIA

o Potential divider: only for slow signals, 1 direction

e Or use a level converter - safe bet, really clever, same device
works in both directions!

5V

logic © |30'g3i\é

' I

is;}gna 1 kQ signal
out

2 kQ
GNDo oGND

» University of - . .
!", Nottingham | Bigital signals: Converting between standards

UK | CHINA | MALAYSIA

o Potential divider: only for slow signals, 1 direction

e Or use a level converter - safe bet, really clever, same device
works in both directions!

Learn concept not circuit!

LV

V
Low Voltage A High Voltage

10 kQ

HV1

C©Elprocus.com

B University of - : ;
!", Nottingham | Digjtal signals: Converting between standards

e Fortunately, it seems that 3.3 V logic WILL be correctly
interpreted by a 5 V Arduino (but not of course the other

way around)

e In general, the inputs to an Arduino are fairly “forgiving”
and will accept TTL (under typical conditions) and CMOS
levels

e And (unusually for a logic gate) they will supply quite a
lot of current, enough to operate an LED via a resistor
without damage.

ty of

Notting

iversi

Un

ham

UK | CHINA | MALAYSIA

b University of -
,.i'.", Nottingham | Bigjtal signals: logic gates in practice

e Logic signhals are generated by, and Logic Gate Symbols
interpreted by, logic gates j)— 3} D D~

e \ery large-scale integration (VLSI) chips, :D :D* 4> *>°’
microprocessors, microcontrollers
(including Atmega!), FPGAs

e Can buy logic gates separately if you wish
e.g., /400 series logic gates based on TTL

i LIJLL
LT)T

o By default, the outputs from these are mORORO] E‘J CRE
" but can be " y

University of

Nottingham

Digital signals: logic gates in practice

UK | CHINA | MALAYSIA

0 0 1 1
123 A .] SUM - A
+789 _B_ Inputs Ag?:ler Output +B +0 +1 +0 +1
B —» Cgﬁ[‘r‘f C Cour =——SUM
912 SUM 0 1 1 (carry) 1<0

TrUth Table

A 0—

B 0—

B

A

C

0

0

0

2-input AND Gate

0

1

0

2-input Ex-OR Gate

B

A

S

0

0

0

0

1

1

Symbol Truth Table

| [e========= rrr========== I
B A | suM |carry '\ Half Adder | | Half Adder | I
H | _ASB 1) | (ASB)eCin , Sum
A—liy SUM (— - SUM | 2=C .
. 1 Sum ° ° 0 0 ! HA | ! HA | .
B 3 l IA.B | | Gin(ASB
7 B —t7+ CARRY |— > CARRY f——"" """ :
0 1 1 0 | | | | | |
e e e J e e e J C
& Carry C ; | Cour
\ Full Adder :
1 1 0 1

I" University of
,.it Nottingham 1 TT|_ totem-pole (push-pull) output

e Output involves two transistors which act as switches

V=5V V

CC:SVﬁ

on
3.4V High
< 0.8V o Oﬂ: Off

on

B

Don’t learn LH picture!

I" University of
,.it Nottingham 1 TT|_ totem-pole (push-pull) output

e Always runs from 5v — output voltages fixed

V=5V

Don’t learn LH picture!

I" University of
T CMOS push-pull output

UK | CHINA | MALAYSIA

e Can use different voltage ranges but output
limited to same voltages as rest of circuit

Vb

_E VDDI VDDI

on off
o—9 ._Oyt High Low

_| « off
grouncjﬁ ;

Don’t learn LH picture, and RH pictured are more or less as prev slide
Operation same as for TTL totem pole so nothing new to learn

on

B University of
E Nottingham | TT| open-collector

e QOutput is either connected to ground (low)
or not connected to ground

o Vet is any reasonable voltage (+12V, +15V)

Vee= Vexr 9 Vext VexT?
Pull-up
resistor &
high low
Output \JFE\

Don’t learn LH picture!

o

B University of
!.1 Nottingham | TT| open-collector

e More versatile than totem-pole in the sense that output
can be in any reasonable desired range not just 0-5v.

e Normal situation relates to totem-pole

e But outputs from interfaces or other devices are often
defined as being open-collector

e Good example is output from optical isolators — to be
discussed shortly

B University of . . "
!", Nottingham | Byt we still have two important questions!

e How do we get logic signals the computer so that we
can use the data within our program?
e How do we get data in our program of the computer in

the form of logic signals so that we can do something real
with it such as switching on a light?

To answer these, we need to know

ty of

Notting

iversi

Un

ham

UK | CHINA | MALAYSIA

b University of
,.i'.", Nottingham | Some terms (by popular request!)

- the part of a computer which
executes the commands in the program

— an integrated circuit (chip) that contains a
CPU e.qg., of a laptop

: complete computer on a chip for control
applications e.g., ATMega 328 in Arduino

— used to describe a system which responds within
an accurately-known time

— communication routes in computer

— an event causing special function (ISR, interrupt
service routine) to take over computer temporarily

» University of . .
,.i'.", Nottingham | Architecture of simple computer

e Central Processor Unit (CPU), [f RA
contains local memory
(registers) | [rom
e Read only memory (ROM) .
e Random access memory (RAM)]
e Input and output SA] devee
e Buses §§§

» University of . .
!", Nottingham | Architecture of simple computer

UK | CHINA | MALAYSIA

1. The CPU places the address of the I/O device that it wants to <
communicate with on the address bus.

Yvy

2. The CPU sends a control signal to the I/O device over the
control bus to indicate whether it wants to read or write data.

3. If the CPU wants to read data from the I/O device, the 1/O
device places the data on the data bus.

:

4. If the CPU wants to write data to the 1/O device, it places the

data on the data bus. ol Input
_ . HE Rz » device
5. The CPU sends a control signal to the I/O device over the gl §"
control bus to indicate that the data transfer is complete. ol &l S
S| €
< G

» University of . .
,.i'.", Nottingham | Architecture of simple computer

e B T ""T"_""""""_l
: == | S| ||]
e Central Processor Unit (CPU), — = || e

contains local memory | AVR o i
(registers) | : —
o Read Only memory (ROM) E |ahn':.:cn| |1Ebi111t.":1| |1:m|:m|;§_mn

e Random access memory (RAM) e (=
e Input and output — | —l—

e Buses | L

REBET

B University of . :
r Nottingham | So how do we connect into this?

e Needs interface to connect data bus to

e Will consider input/output on the Arduino

e In most cases, the interface device is "memory
mapped”

e perceived by computer as a memory location (or something
very similar — “port mapped”, e.g., PORTA, PORTB. Etc.)

e identified by an address on the address bus

e Assume:
e digital "high" (1) = 5V
e digital "low" (0) = OV

o
UK | CHINA | LA

w University of
Nottingham
MALAYSIA

HOw a computer
WOrKS!

Problems when data get into a computer!

r University of

& Nottingham | Simple parallel I/O on a PC or microprocessor

e Often need to get data into the PC’s data bus and into
program from external device

e External device will put either 5V or OV on (typically)
eight wires (parallel data)

e Need to transfer it to the for access by CPU.
e Problem:
e When bus used for other purposes, external signals

would data!

B University of _ :
E Nottingham | Simple parallel I/O on a PC or microprocessor

e Solution: use three-state (tri-state) buffer, has the
states:

e high
e low
e “high impedance” (i.e., open-circuit)

e When enabled:
o if input is high, puts high signal onto bus
o if input is low, puts low signal onto bus

r University of

& Nottingham | Simple parallel I/O on a PC or microprocessor

e But when disabled:

e connection to data bus is broken ("high impedance
state") like an open switch

e Enable/disable depends upon whether

e the address on the address bus corresponds to the
address identifying the interface

e whether the data at the address is to be read or
written (status of read/write line)

University of . _ :
,.ir.'. Nottingham | Equivalent behaviour of tri-state buffer output

Output connected to 5v

(high or logic 1) /

University of . _ :
,.ir.', Nottingham | Fquivalent behaviour of tri-state buffer output

Output connected to Ov
(low or logic 0) ¢

Ov

University of . _ :
,.ir.'. Nottingham | Equivalent behaviour of tri-state buffer output

Output not connected to 5v
or Ov (high impedance state) °

OVL

University of

Nottingham | Simple digital input using tri-state buffer (e.g., 74244)

UK | CHINA | MALAYSIA

Data

bus Inputs

Address

Chip ENABLE lines
bus g

(least and most
significant 4 bits)

R/W

> University of
,!_", m?{}ﬂg%':ggg Simple digital input using tri-state buffer (e.g., 74244)

e Initially, all outputs
form buffer are high

impedance and data -
bus can “do its own i,)
thing” without bus ¢ Inputs
interference from it. =

%

‘Chip disabled

> University of
!‘: Nottingham Simple digital input using tri-state buffer (e.qg., 74244)

UK | CHINA | MALAYSIA

e When:

e correct address is
selected and

e READ line is set Data

e data bus is set to bus
the same values

(high or low) as the
input lines

data are transferred

to the bus ‘

Inputs

‘Chip enabled

> University of
,!_", m?{}ﬂg%':ggg Simple digital input using tri-state buffer (e.g., 74244)

e When:
e data have been read
by (for example) the -
CPU and -
: Data
e address is no longer .o ¥ Inputs
selected —
e the 74244 outputs go 3
"high impedance” -
(open-circuit) again —
e disconnects from ‘ ‘Chip disabled

data bus.

o
UK | CHINA | LA

w University of
Nottingham
MALAYSIA

HOw a computer
Works!

Problems when data get out of a computer!

I" University of : — .
,.it Nottingham | Simple digital output using a latch (e.g. 74373)

e When putting data out from PC we have a
different problem

e Data only present on data bus for a tiny
fraction of a second

e But we need data to persist on output port
for as long as we wish

I" University of : — .
r Nottingham | Simple digital output using a latch (e.g. 74373)

e Necessary to "latch” the values on the data bus so
they persist on the output lines after chip ceases to be
addressed

e |atch outputs follow data inputs (from the bus) when
the latch ENABLE line is high.

e When the latch ENABLE line goes low, the outputs are
stable (latched) - “freezes” value that was on bus

when ENABLE went low

,.i'.", Nottingham Simple digital output using a latch (e.g., 74373)

UK | CHINA | MALAYSIA

Data

bus Existing
not yet outputs
influencing d
outputs

Address Chip disabled

bus

R/W

,.i'.", Nottingham Simple digital output using a latch (e.g., 74373)

UK | CHINA | MALAYSIA

Data

bus Outputs

—)

Chip enabled -
outputs track data bus

Address
bus

Latch ENABLE line

R/W

,.i'.", Nottingham Simple digital output using a latch (e.g., 74373)

UK | CHINA | MALAYSIA

Data

bus Outputs
now

ignored ‘

Chip disabled -
outputs still active but
frozen at values

when chip was disabled

Address
bus

R/W

ﬂ-" Né"t‘i’.i'iéhém
Practical

Input/output
devices

» University of
!", Nottingham | Practical input/output devices: Arduino

e In reality, we tend to use multi-
purpose, programmable input/output
devices

e This is true for the Arduino, but i/o
device are built-in

e In the Arduino all pins can be
configured separately for digital input
or output

I" University of .
,.it Nottingham | Input/output ports on the Arduino

UK | CHINA | MALAYSIA

e The input and output pins = || T

are grouped into ports e
(termed B, C and D on the | &=
Uno) ,‘ —[——=

¥ r |—Fi_':’"
e Each port (8 pins) has an R e =

1
» maTCE | fralog % izl | g |

address and behaves exactly e =

ATAELE

like memory == -
F 1
k J ki
v 4o e~
1 POAT D (8) POAT B [8) POAT C (7) >
= — I
______________________________________ WTALJH. 2]

» University of
it Nottingham | Practical input/output devices: Arduino Uno

UK | CHINA | MALAYSIA

e Port B: pins
8-13

e Port C: pins
AO-A5 +
reset

e Port D: pins
0-7

* = e i) : oK L - s
. . S MOVUOU P LA
™ » of t“ y " .
S S m 5 : ; - S
& ol 9 ONINQYY - wmmxy : RN |
/ NO M coevveesersnensens, wikis X1 -
(ONM} g
o o, e
eesseseseecsseees® gy 1)
" " - ’) ‘,

https://github.com/Bouni/Arduino-Pinout

University of

Nottingham

UK | CHINA | MALAYSIA

e Ports A-L (not I),
not all connecte
to pins on
Arduino

Practical i/o devices: Arduino Mega

SCK2

ARDUINO bee

MEGA -

ATMEGABU2/ATMEGAL6U2 ICSP
PINOUT DIAGRAM

HIMod

Cut to disable the auto-reset

This provides o logic reference voltage
Jor siields that wse it. It is commected to the 5V bus.

LHTE @ R3 ony
{ soA)

AREF
Not Connected
R3 only ©)

The input voltage to the Arduing board when
it is runming from extemnal. power,
Not USB bus power.

Skl ;

;
;
i

el

ONINQYY

e G
Lo gEETmEg

5

D) e R E lilololmil.

sCL 21

IEEISEES SEEEEE
w

Boe e
RERD

A9
AIL &
AL
A5 =Y

o

EEEE

=
W
n
i}
3

EEEEREEE

Connected to the ATMega
and used for US8 program
and communicating with 1t

sCL

Absolute lmxzper' pin 46mA
reccomended 2@mA

Absolute max 206mA
for entire package

aND

Power
control
Physical Pin
Port Pin

Pin Function
pigital Pin
Analog Related Pin
PHM Pin
serial Pin
IDE

@@ source Total 15ema

https://lynx2015.files.wordpress.com/201

5/08/arduino-mega-pinout-diagram.png

w ||||||| ity of
Nottlngham

Simple digital
Input on the
Arduino

By Arduino language

r Unive[sitg of
A Nottingham
UK | CHINA | MALAYSIA

Simple digital input on the Arduino

e In principle we need a function which will handle
processes we’'ve talked about e.qg.,

e Take a value of address or port location on the
data bus

e Generate the necessary signals on the control
bus (i.e., read)

e Give out an integer signal (to the user) equal in
value to the binary value of the hi/lo combination
present on the input port

B University of _ I _ .
!", Nottingham | Simple digital input on the Arduino

e Most Arduino users are not interested in the address
of a port, and are only interested in the pin number on
the Arduino e.g., pin 1-13 or AO-A5 on Uno

e The “easy” way is to do input one pin at a time using
the digitalRead () function:

int digitalRead(pin);

e Returns HIGH (1) or Low (0) depending on whether
input line is low or high

> University of . R .
it Nottingham | Example: simple digital input

const int alarmPin{l2):
wvold setupl()

{
Serial .begin (9a00) ;
pinMode (alarmPin, INFUT);

vold loop()

{
1f ({digitalRead{alarmPin)) // Execute contents if pin 12 HIGH
{
Serial.println{"Warning: alarm raised™);
l

delay (1000); // Wait 1 second

B University of . N .
L'.", Nottingham | Simple digital output on the Arduino

e The “easy” way is to output one pin at a time using
the digitalWrite () function:

void digitalWrite (pin, wvalue) ;
e Before we can use digitalWrite we need to set the pin

as output:
void pinMode (pin, mode) ;

where mode is INPUT, OUTPUT

B University of B} .
it Nottingham | Example: our old friend “Blink”

UK | CHINA | MALAYSIA

vold setup() |
S/ initialize digital pin LED BUILTIN as an output.
pinMode (LED BUILTIN, OUTFEUT):;

vold loop() |
digitalWrite (LED BUILTIN, HIGH): Jf turn the LED on

delay (1000) 7 Jf walt for a second
digitalWrite (LED BUILTIN, LOW): Jf turn the LED off
delay (1000) 7 Jf walt for a second

> University of :
,.i'.", Nottingham | More advanced input/output

e Above approach works fine but is slow

e There is a quicker way which involves
bypassing the easy-to-use API for Arduino

e Makes use of low-level facilities for
programming the Atmega chip:

> University of :
,.i'.", Nottingham | More advanced input/output

e Above approach works fine but is slow

e There is a quicker way which involves
bypassing the easy-to-use API for Arduino

e Makes use of low-level facilities for
programming the Atmega chip:

Registers!

w ||||||| ity of
Nottlngham

Simple digital
Input on the
Arduino

Registers

B University of _
!". Nottingham — |\\/hat are registers?

locations containing:

e Digital input or output ports (as we
described earlier)

e Control registers of bits (flags) for
configuring port e.qg., direction of bits for
input and output

e Other control registers for all kinds of in-
depth functionality.

B University of _
!". Nottingham | \\/hat are registers?

UK | CHINA | MALAYSIA

e All this is described in the datasheet (the manual for the
Atmega2560 chip)

13.4.5 PORTE - Port B Data Reglster

Bit

T B 5 4 3 2 1 o
005 (0xz5) - [PORTE? FORTE: | PORTES FORTE: PORTE
RW RW RwW RW RAW RwW RW

Read\Write RW
Initial Value 1] 0 0 1] 0 0 ad 1]

13.4.6 DDRB - Port B Data Directlon Register

Bit 7 B 5 4 3 2 1 0
004 (0124 DDRE
ReadWrite RW RwW R RwW RW RAW RwW RW
Initial Value] 0]] L] 0 0 0

e Any information you need on the chip is there - trust me!

University of . - .
it Nottingham | Fxample: Blink using registers

UK | CHINA | MALAYSIA

PB&
PBS

e We'll use two registers on the S gy H &

RESET-EN

A
B

Arduino Mega:

e The port itself (the Data
Register):
e Port B of Mega covers pins

2
(1)
@l | paff walfds o ffen | Jeafl ol IE SIS

ONINaQyy

]
] SN ew e wr e o NIAGND AS W

m = (=]
NI DOTYNY —_— i3
@95t

& =i

e So, Pin 13 (the LED pin) is iRy B
Port B Eﬁ 14 FoEH 21

e Can switch this on by writing =8
binary (0x80) to — i
the address of Port B which =i e

is 0x25, given the code =
PORTB e A

5
S N

University of . - .
it Nottingham | Fxample: Blink using registers

UK | CHINA | MALAYSIA

o We'll use two registers on the - e
Arduino Mega:
e Before we do this, we set the g S o
pin directions (0=input, = ;g]; iz
1=output) using the Data %% 8 i
Direction Register, given the arjm
code e
=5

=8 i Ste

> University of . . .
it Nottingham | Fxample: Blink using registers

UK | CHINA | MALAYSIA

vold setup()

{
// initialize digital pin 13 (bit 7 of Port B) as an output.
// by writing bit 7 to data direction register. All others input.
DDRB = 0x80; // equivalent to pinMode (LED BUILTIN, OUTIPUT):

void loop()

{
// Write 80 hex i.e. 10000000 to "memory"™ at address 25 hex (PORTIB)
PORTB=0x80; // LED on: Pin 13 (LED) is bit 7 of port B at 25 hex
delay(500); // wait for half a second
PORTB=0x00; // Then set all bits back to zero to switch off LED.
delay(500); // wait for half a second

B University of i
,.ir.'. m?{}ﬂggﬂﬁg\gg Does it really matter?

e Many of the clever things we want to illustrate can
only be done well with registers

e Register-level programming can run much faster,
important for microprocessors.

e Compare these “high speed Blink” programs:

void setupl() void setup()

{ {
pinMode (13, OUTPFUT); DDRB = 0x80;

1 }

void loop() void loop()

{ {
digitalWrite (13, HIGH); PORTB = 0x80;
digitalWrite (13, LOW); PORTIB = 0x00;

! }

void setup()

DDRB = DDRB | 0x80;

void loop()

PORTB = PORTB | 0x80; // Set pin 13, leave others
PORTB = PORTB & (~0x80); // Reset pin 13, leave others

w ||||||| ity of
Nottlngham

Simple digital
Input on the
Arduino

Let us compare!

!", Nottingham First, the “easy” way to blink as fast as possible

UK | CHINA | MALAYSIA

e The fastest we can "blink” with digitalWwrite() is

about 0.25 MHz (250 kHz) as the function is quite slow
to run

volid setup()
{

pinMode (13, OUTPEUT]);
1

vold loop()

{
digitalWrite (13, HIGH):;
digitalWrite (13, LOW);

!

1 div =1 us

B University of . . .
,i'.", Nottingham | Nlow using direct register access

o With direct register

access fastest is about 4
MHz

void setup()

1 div=1us
DDRB = DDRB | 0x80;
}
void loop()
{
PORTB = PORTB | 0x80; // Set pin 13, leave others
PORTB = PORTB & (~0x80); // Reset pin 13, leave others

8 University of . . .
,i'.", Nottingham | Nlow using direct register access

UK | CHINA | MALAYSIA

~w

o With direct register G (HEE

access fastest is faster
about 4 MHz

v M = "1
0id setup()

DDRB = DDRB | 0x80; 1 d|v — us
}
void loop()
{

PORTB = PORTB | 0x80; // Set pin 13, leave others

PORTB = PORIB & (~0x80); // Reset pin 13, leave others

w ||||||| ity of
Nottlngham

Hardware
timer/counters

Introduction

8 University of _ : .
,!", m?}j;g%';ggg Real-time input/output on non-RT system: hardware timer/counters

e Often need interfacing which requires:

e Detection of specific events, including counting of
pulses or measuring rates of pulses

e Generation of timed events such as pulses for driving a
stepper motor

e Signals with specific waveforms e.g., pulse width
modulation (PWM) to give an effective value of voltage.

I" University of . .
it Nottingham | Shortcomings of software-controlled input/output

UK | CHINA | MALAYSIA

e In principle:
e Can use repeated “polling” of inputs to monitor for input events

e Can create pulses using i/o and software — write high output,
wait, write low output, etc.

e Not advisable with general-purpose operating systems
e.g., Windows

e Pulse generation for stepper motor - slowed down when
mouse was moved!

e Even in Arduino, may not be fast enough

» University of . I . E
!". Nottingham | Time-critical input/output: hardware timer/counters

e Timer/Counters: low cost and fairly easy

e Useful for real time generation of pulses and frequency
counting on PC

e Several built into the Arduino Uno, Mega etc., can be
configured for different jobs

e As the 8254, available on boards that simply slot into
back of PC, but are slightly different from those on
Arduino

e Other more specialist counters are available e.g. HCTL
2022, LS7366R

Unive[sitg of . S— . .
!". Nottingham | Time-critical input/output: hardware timer/counters

e We will talk about timer-counter chips in more detail
next time

e They underlie several jobs we will do on the Arduino

e.dg., generation “analogue” (PWM) outputs for driving
motors at variable speed

e Will use a specialist timer counter (LS7366R) to
measure and control position of a rotating shaft.

r UNni\ﬁr.sitg I(':f
= otiingham
UK | CHINA gMALA‘r’SIA Su m m ary

e Examined briefly how computer works

e Explored circuitry used in digital logic: TTL, CMQOS,
push-pull, open collector

e Examined the need for interfaces to get digital data
onto and off the data bus

e Examined simple input/output interfaces

e Explained why simple interface no good for counting
events or measuring frequencies, and hence the need
for timer-counters

	Slide 1: Mechatronics MMME3085
	Slide 2: Objectives of lecture
	Slide 3: A typical Mechatronics System
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Types of Signals
	Slide 7: Types of signal
	Slide 8: Types of signal
	Slide 9: Digital Signal
	Slide 10: Digital signals
	Slide 11: Digital signals
	Slide 12: Digital signals: TTL
	Slide 13: Digital signals: Other standards
	Slide 14: Digital signals: Other standards
	Slide 15: Digital signals: Other standards
	Slide 16: Digital signals: Converting between standards
	Slide 17: Digital signals: Converting between standards
	Slide 18: Digital Signal
	Slide 19: Digital signals: Converting between standards
	Slide 20: Digital signals: Converting between standards
	Slide 21: Digital signals: Converting between standards
	Slide 22: Digital signals: Converting between standards
	Slide 23: Digital Signal
	Slide 24: Digital signals: logic gates in practice
	Slide 25: Digital signals: logic gates in practice
	Slide 26: TTL totem-pole (push-pull) output
	Slide 27: TTL totem-pole (push-pull) output
	Slide 28: CMOS push-pull output
	Slide 29: TTL open-collector
	Slide 30: TTL open-collector
	Slide 31: But we still have two important questions!
	Slide 32: How a computer works!
	Slide 33: Some terms (by popular request!)
	Slide 34: Architecture of simple computer
	Slide 35: Architecture of simple computer
	Slide 36: Architecture of simple computer
	Slide 37: So how do we connect into this?
	Slide 38: How a computer works!
	Slide 39: Simple parallel I/O on a PC or microprocessor
	Slide 40: Simple parallel I/O on a PC or microprocessor
	Slide 41: Simple parallel I/O on a PC or microprocessor
	Slide 42: Equivalent behaviour of tri-state buffer output
	Slide 43: Equivalent behaviour of tri-state buffer output
	Slide 44: Equivalent behaviour of tri-state buffer output
	Slide 45: Simple digital input using tri-state buffer (e.g., 74244)
	Slide 46: Simple digital input using tri-state buffer (e.g., 74244)
	Slide 47: Simple digital input using tri-state buffer (e.g., 74244)
	Slide 48: Simple digital input using tri-state buffer (e.g., 74244)
	Slide 49: How a computer works!
	Slide 50: Simple digital output using a latch (e.g. 74373)
	Slide 51: Simple digital output using a latch (e.g. 74373)
	Slide 52: Simple digital output using a latch (e.g., 74373)
	Slide 53: Simple digital output using a latch (e.g., 74373)
	Slide 54: Simple digital output using a latch (e.g., 74373)
	Slide 55: Practical input/output devices
	Slide 56: Practical input/output devices: Arduino
	Slide 57: Input/output ports on the Arduino
	Slide 58: Practical input/output devices: Arduino Uno
	Slide 59: Practical i/o devices: Arduino Mega
	Slide 60: Simple digital input on the Arduino
	Slide 61: Simple digital input on the Arduino
	Slide 62: Simple digital input on the Arduino
	Slide 63: Example: simple digital input
	Slide 64: Simple digital output on the Arduino
	Slide 65: Example: our old friend “Blink”
	Slide 66: More advanced input/output
	Slide 67: More advanced input/output
	Slide 68: Simple digital input on the Arduino
	Slide 69: What are registers?
	Slide 70: What are registers?
	Slide 71: Example: Blink using registers
	Slide 72: Example: Blink using registers
	Slide 73: Example: Blink using registers
	Slide 74: Does it really matter?
	Slide 75: Simple digital input on the Arduino
	Slide 76: First, the “easy” way to blink as fast as possible
	Slide 77: Now using direct register access
	Slide 78: Now using direct register access
	Slide 79: Hardware timer/counters
	Slide 80: Real-time input/output on non-RT system: hardware timer/counters
	Slide 81: Shortcomings of software-controlled input/output
	Slide 82: Time-critical input/output: hardware timer/counters
	Slide 83: Time-critical input/output: hardware timer/counters
	Slide 84: Summary

