
Mechatronics
MMME3085

Module Convenor – Abdelkhalick Mohammad

Computer Architecture,
Digital input/output, and

Timer/counters

Lecture 2

Objectives of lecture

• To introduce computer architecture and understand what
goes on in a computer

• To introduce the hardware and implications for software
required to interface a computer to electromechanical
systems

• To demonstrate the way that a simple parallel interface is
implemented in Arduino

• To introduce the concept of timer/counters and their uses
in the Arduino

A typical Mechatronics System

Computer
or micro-
processor

Program
e.g., in C

Buses
in
computer

Digital
signal

Analogue
signal

Digital
signal

Digital
signal

Analogue
signal

Digital signal

Digital
output
inter-
face;
timer

DAC Electronic
hardware

Actuators

Mechanical
system

Digital
input
inter-
face;
counters

Sensors

ADC Electronic
hardware

1,4,10

 2,3,10
 5,6

7,8,9

Introduction

Introduction

• Want to:
• transfer data from program to an output device

• take data from external source (input device) into the computer

• Data can be:
• Serial (series of pulses - high or low for 1 or 0, in principle only 1

or 2 wires plus ground needed)

• Parallel (1 wire per bit, usually 8 per "port")

• Concentrate on parallel data at present time

• Need to know what we can connect to

Types of

Signals

Types of signal

• Analogue: signal proportional to physical value

• Varying voltage or current

• Infinitely variable, resolution limited by:

• Resolution of measurement device e.g., ADC (analog-
to-digital converter)

• Noise

• Digital: binary number repr’g physical value

• Two states (0/1 represented as 0v/5v etc)

• Serial or parallel (consider only parallel)

• Resolution limited by number of bits

Types of signal

• Trains of pulses:

• Voltage alternates between two levels (square wave).

• Frequency of the pulse train or the number of pulses
transmitted

• To have an up/down count we need two sets of pulses
1/4 phase out of step (quadrature pulses) and a
suitable decoder

• Usually defined as a digital signal (interested in “rate”
rather than “state”)

Digital Signal

Digital signals

• So far, we have talked about digitals signals having:

• A certain number of bits (8, 16, 24 etc.)

• Only two levels: 0v or 5v

• This last point is not strictly

 true...

• It will work but isn’t the
 full story

Digital signals

• Digital lines on a Data Acquisition (DAQ) device accept
and generate Transistor-Transistor Logics (TTL)
compatible signals

+0.8 V

0 V
low

+5.0 V

+2.0 V

high

indeterminate

Definition of a TTL Signal

Digital signals: TTL

• Actual voltage levels depend on the circuitry we use to
generate the digital signal

• Most common (and the one used in your labs) is Transistor-
Transistor Logic (TTL)

• Traditional, obsolete for actual circuits

• Still used as a standard for i/o levels

Description Voltage level

Low input < 0.8v

High input > 2v

Low output < 0.4v

High output > 2.7-3.4v (typical)

Appr.
2.7 V

0.4 V

Hi

Lo

Output

Hi

Lo

Input

2 V

0.8 V

undefined

TTL

ü

ü

Digital signals: Other standards

• Be aware that there are various other standards for logic
levels, relating to other types of circuitry

• e.g., CMOS (complementary metal oxide semiconductor)
now standard approach: some High-speed CMOS (HC) use
significantly different levels

• Fortunately, can get CMOS circuits that accept TTL
voltages for input (HC Transistor series)

• Other levels sometimes used e.g., 0v/24v

• 3.3v is being increasingly widely used

Digital signals: Other standards

2.7 V

0.4 V

Hi

Lo

Output

Hi

Lo

Input

2.0 V

0.8 V

Undefined

TTL (5V)

Hi

Lo

Input

3.5 V

1.5 V

Undefined

Hi

Lo

Input

4.95 V

0.05 V

CMOS(5V)

3.0 V

0.5 V

Hi

Lo

Output

CMOS (3.3V)

1 V

2.3 V
Undefined

Digital signals: Other standards

• There can be incompatibilities between different logic
families even if supplied by same voltage…

2.7 V

0.4 V

Hi

Lo

Output

Hi

Lo

Input

2 V

0.8 V

TTL

✓

✓

2.7 V

0.4 V

Hi

Lo

Output

TTL



✓

Hi

Lo

Input

3.5 V

1.5 V

CMOS(5V)

Undefined

Undefined

Digital signals: Converting between standards

• Not directly compatible! Will probably work for driving low
power TTL input from 3.3V logic, but won’t work for driving
some 5V CMOS:

3 V

0.5 V

Hi

Lo

Output

Hi

Lo

Input

2 V

0.8 V

TTL

✓

✓

3 V

0.5 V

Hi

Lo

Output



✓

Hi

Lo

Input

3.5 V

1.5 V

CMOS(5V)

16

CMOS
(3.3V)

CMOS
(3.3V)

Undefined

Undefined

Digital signals: Converting between standards

• And driving 3.3V logic input from 5V logic (CMOS or TTL)
may well burn it out!



✓

Hi

Lo

Input

4.95 V

0.05 V

CMOS (5V)

CMOS (3.3V)

1 V

2.3 V
Undefined

Digital Signal

Converting between standards

Digital signals: Converting between standards

• Example: the Arduino Due is based on different technology
(ARM) from the Atmega 328 and 2560

• It is based on 3.3 V logic

• But you may want to use it with 5V devices

Digital signals: Converting between standards

• Potential divider: only for slow signals, 1 direction

• Or use a level converter – safe bet, really clever, same device
works in both directions!

1 k

2 k

5V
logic
signal
in

GND

3.3V
logic
signal
out

GND

Digital signals: Converting between standards

• Potential divider: only for slow signals, 1 direction

• Or use a level converter – safe bet, really clever, same device
works in both directions!

Learn concept not circuit!

Digital signals: Converting between standards

• Fortunately, it seems that 3.3 V logic WILL be correctly
interpreted by a 5 V Arduino (but not of course the other
way around)

• In general, the inputs to an Arduino are fairly “forgiving”
and will accept TTL (under typical conditions) and CMOS
levels

• And (unusually for a logic gate) they will supply quite a
lot of current, enough to operate an LED via a resistor
without damage.

Digital Signal

Logic gates in practice

Digital signals: logic gates in practice

• Logic signals are generated by, and
interpreted by, logic gates

• Very large-scale integration (VLSI) chips,
microprocessors, microcontrollers
(including Atmega!), FPGAs

• Can buy logic gates separately if you wish
 e.g., 7400 series logic gates based on TTL

• By default, the outputs from these are
“totem pole”, but can be “open collector”

Digital signals: logic gates in practice

TTL totem-pole (push-pull) output

• Output involves two transistors which act as switches

Don’t learn LH picture!

< 0.8V 3.4 V

on

off

Vcc=5V

on

off

High

Vcc=5V

TTL totem-pole (push-pull) output

• Always runs from 5v – output voltages fixed

Don’t learn LH picture!

>2.4 V 0.2 V

off

on

Vcc=5V

off

on

Low

Vcc=5V

CMOS push-pull output

• Can use different voltage ranges but output
limited to same voltages as rest of circuit

Don’t learn LH picture, and RH pictured are more or less as prev slide
Operation same as for TTL totem pole so nothing new to learn

off

on

Low

VDD

on

off

High

VDD
VDD

ground

out

TTL open-collector

• Output is either connected to ground (low)
or not connected to ground

• VEXT is any reasonable voltage (+12V, +15V)

Don’t learn LH picture!

Output

low

on

Vcc=5V VEXT

high

off

VEXT VEXT

Pull-up
resistor

TTL open-collector

• More versatile than totem-pole in the sense that output
can be in any reasonable desired range not just 0-5v.

• Normal situation relates to totem-pole

• But outputs from interfaces or other devices are often
defined as being open-collector

• Good example is output from optical isolators – to be
discussed shortly

But we still have two important questions!

• How do we get logic signals into the computer so that we
can use the data within our program?

• How do we get data in our program out of the computer in
the form of logic signals so that we can do something real
with it such as switching on a light?

To answer these, we need to know how a computer works!

How a computer

works!

Some terms (by popular request!)

• Central Processing Unit (CPU) - the part of a computer which
executes the commands in the program

• Microprocessor – an integrated circuit (chip) that contains a
CPU e.g., of a laptop

• Microcontroller: complete computer on a chip for control
applications e.g., ATMega 328 in Arduino

• Real time – used to describe a system which responds within
an accurately-known time

• Buses – communication routes in computer

• Interrupt – an event causing special function (ISR, interrupt
service routine) to take over computer temporarily

Architecture of simple computer

CPU ROM

RAM

Input

device

Output

device

8

4
typ.

16

D
a

ta
 b

u
s

A
d

d
re

s
s

 b
u

s

C
o

n
tr

o
l

b
u

s

• Central Processor Unit (CPU),
contains local memory
(registers)

• Read only memory (ROM)

• Random access memory (RAM)

• Input and output

• Buses

Architecture of simple computer

1. The CPU places the address of the I/O device that it wants to

communicate with on the address bus.

2. The CPU sends a control signal to the I/O device over the

control bus to indicate whether it wants to read or write data.

3. If the CPU wants to read data from the I/O device, the I/O

device places the data on the data bus.

4. If the CPU wants to write data to the I/O device, it places the

data on the data bus.

5. The CPU sends a control signal to the I/O device over the

control bus to indicate that the data transfer is complete.

CPU ROM

RAM

Input

device

Output

device

8

4
typ.

16

D
a

ta
 b

u
s

A
d

d
re

s
s

 b
u

s

C
o

n
tr

o
l

b
u

s

Architecture of simple computer

• Central Processor Unit (CPU),
contains local memory
(registers)

• Read only memory (ROM)

• Random access memory (RAM)

• Input and output

• Buses

So how do we connect into this?

• Needs interface to connect data bus to peripheral
device (i.e., sensor/actuator)

• Will consider input/output on the Arduino

• In most cases, the interface device is “memory
mapped”
• perceived by computer as a memory location (or something

very similar – “port mapped”, e.g., PORTA, PORTB. Etc.)

• identified by an address on the address bus

• Assume:
• digital "high" (1) ≈ 5V

• digital "low" (0) ≈ 0V

How a computer

works!

Problems when data get into a computer!

Simple parallel I/O on a PC or microprocessor

• Often need to get data into the PC’s data bus and into
program from external device

• External device will put either 5V or 0V on (typically)
eight wires (parallel data)

• Need to transfer it to the data bus for access by CPU.

• Problem:

• When bus used for other purposes, external signals
would swamp/corrupt data!

Simple parallel I/O on a PC or microprocessor

• Solution: use three-state (tri-state) buffer, has the
states:

• high

• low

• “high impedance” (i.e., open-circuit)

• When enabled:

• if input is high, puts high signal onto bus

• if input is low, puts low signal onto bus

Simple parallel I/O on a PC or microprocessor

• But when disabled:

• connection to data bus is broken ("high impedance
state") like an open switch

• Enable/disable depends upon whether

• the address on the address bus corresponds to the
address identifying the interface

• whether the data at the address is to be read or
written (status of read/write line)

Equivalent behaviour of tri-state buffer output

Output connected to 5v
(high or logic 1)

5v

0v

Equivalent behaviour of tri-state buffer output

Output connected to 0v
(low or logic 0)

5v

0v

Equivalent behaviour of tri-state buffer output

Output not connected to 5v
or 0v (high impedance state)

5v

0v

Simple digital input using tri-state buffer (e.g., 74244)

Address
and

read/write
decoding
circuits

Address
bus

R/W

Tri-state
buffer

(74244)

Data
bus

Chip ENABLE lines
(least and most
significant 4 bits)

Inputs

Simple digital input using tri-state buffer (e.g., 74244)

• Initially, all outputs
form buffer are high
impedance and data
bus can “do its own
thing” without
interference from it.

Tri-state
buffer

(74244)

Data
bus Inputs

Chip disabled

Simple digital input using tri-state buffer (e.g., 74244)

• When:
• correct address is

selected and

• READ line is set

• data bus is set to
the same values
(high or low) as the
input lines

• data are transferred
to the bus

Tri-state
buffer

(74244)

Data
bus Inputs

Chip enabled

Simple digital input using tri-state buffer (e.g., 74244)

• When:
• data have been read

by (for example) the
CPU and

• address is no longer
selected

• the 74244 outputs go
"high impedance"
(open-circuit) again

• disconnects from
data bus.

Tri-state
buffer

(74244)

Data
bus Inputs

Chip disabled

How a computer

works!

Problems when data get out of a computer!

Simple digital output using a latch (e.g. 74373)

• When putting data out from PC we have a
different problem

• Data only present on data bus for a tiny
fraction of a second

• But we need data to persist on output port
for as long as we wish

Simple digital output using a latch (e.g. 74373)

• Necessary to "latch" the values on the data bus so
they persist on the output lines after chip ceases to be
addressed

• Latch outputs follow data inputs (from the bus) when
the latch ENABLE line is high.

• When the latch ENABLE line goes low, the outputs are
stable (latched) – “freezes” value that was on bus
when ENABLE went low

Simple digital output using a latch (e.g., 74373)

Address
bus

R/W

Trans-
parent
latch
e.g.

74373

Data
bus
not yet
influencing
outputs

Existing
outputs

Address and
read/write
decoding
circuits

Chip disabled

Simple digital output using a latch (e.g., 74373)

Address
bus

R/W

Trans-
parent
latch
e.g.

74373

Data
bus

Latch ENABLE line

Outputs

Address and
read/write
decoding
circuits

Chip enabled –
outputs track data bus

Simple digital output using a latch (e.g., 74373)

Address
bus

R/W

Trans-
parent
latch
e.g.

74373

Data
bus
now
ignored

Outputs

Address and
read/write
decoding
circuits

Chip disabled –
outputs still active but
frozen at values
when chip was disabled

Practical

input/output

devices

Practical input/output devices: Arduino

• In reality, we tend to use multi-
purpose, programmable input/output
devices

• This is true for the Arduino, but i/o
device are built-in

• In the Arduino all pins can be
configured separately for digital input
or output

Input/output ports on the Arduino

• The input and output pins
are grouped into ports
(termed B, C and D on the
Uno)

• Each port (8 pins) has an
address and behaves exactly
like memory

Practical input/output devices: Arduino Uno

• Port B: pins
8-13

• Port C: pins
A0-A5 +
reset

• Port D: pins
0-7

https://github.com/Bouni/Arduino-Pinout

Practical i/o devices: Arduino Mega

• Ports A-L (not I),
not all connected
to pins on
Arduino

https://lynx2015.files.wordpress.com/201
5/08/arduino-mega-pinout-diagram.png

Simple digital

input on the

Arduino

By Arduino language

Simple digital input on the Arduino

• In principle we need a function which will handle
processes we’ve talked about e.g.,

• Take a value of address or port location on the
data bus

• Generate the necessary signals on the control
bus (i.e., read)

• Give out an integer signal (to the user) equal in
value to the binary value of the hi/lo combination
present on the input port

Simple digital input on the Arduino

• Most Arduino users are not interested in the address
of a port, and are only interested in the pin number on
the Arduino e.g., pin 1-13 or A0-A5 on Uno

• The “easy” way is to do input one pin at a time using
the digitalRead() function:

 int digitalRead(pin);

• Returns HIGH (1) or LOW (0) depending on whether

input line is low or high

Example: simple digital input

Simple digital output on the Arduino

• The “easy” way is to output one pin at a time using
the digitalWrite() function:

void digitalWrite(pin, value);

• Before we can use digitalWrite we need to set the pin
as output:

 void pinMode(pin, mode);

where mode is INPUT, OUTPUT

Example: our old friend “Blink”

More advanced input/output

• Above approach works fine but is slow

• There is a MUCH quicker way which involves
bypassing the easy-to-use API for Arduino

• Makes use of low-level facilities for
programming the Atmega chip:

More advanced input/output

• Above approach works fine but is slow

• There is a MUCH quicker way which involves
bypassing the easy-to-use API for Arduino

• Makes use of low-level facilities for
programming the Atmega chip:

Registers!

Simple digital

input on the

Arduino

Registers

What are registers?

• Memory-mapped locations containing:

• Digital input or output ports (as we
described earlier)

• Control registers of bits (flags) for
configuring port e.g., direction of bits for
input and output

• Other control registers for all kinds of in-
depth functionality.

What are registers?

• All this is described in the datasheet (the manual for the
Atmega2560 chip)

• Any information you need on the chip is there – trust me!

Example: Blink using registers

• We’ll use two registers on the
Arduino Mega:

• The port itself (the Data
Register):

• Port B of Mega covers pins
53-50 & 10-13

• So, Pin 13 (the LED pin) is
Port B bit 7

• Can switch this on by writing
binary 10000000 (0x80) to
the address of Port B which
is 0x25, given the code
PORTB

Example: Blink using registers

• We’ll use two registers on the
Arduino Mega:

• Before we do this, we set the
pin directions (0=input,
1=output) using the Data
Direction Register, given the
code DDRB=0x80

Example: Blink using registers

Does it really matter?

• Many of the clever things we want to illustrate can
only be done well with registers

• Register-level programming can run much faster,
important for microprocessors.

• Compare these “high speed Blink” programs:

Simple digital

input on the

Arduino

Let us compare!

First, the “easy” way to blink as fast as possible

• The fastest we can “blink” with digitalWrite() is
about 0.25 MHz (250 kHz) as the function is quite slow
to run

1 div = 1 us

Now using direct register access

• With direct register
access fastest is about 4
MHz

1 div = 1 us

Now using direct register access

• With direct register
access fastest is
about 4 MHz

1 div = 1 us

16 times
faster

Hardware

timer/counters

Introduction

Real-time input/output on non-RT system: hardware timer/counters

• Often need interfacing which requires:

• Detection of specific events, including counting of
pulses or measuring rates of pulses

• Generation of timed events such as pulses for driving a
stepper motor

• Signals with specific waveforms e.g., pulse width
modulation (PWM) to give an effective value of voltage.

Shortcomings of software-controlled input/output

• In principle:
• Can use repeated “polling” of inputs to monitor for input events

• Can create pulses using i/o and software – write high output,
wait, write low output, etc.

• Not advisable with general-purpose operating systems
e.g., Windows

• Pulse generation for stepper motor - slowed down when
mouse was moved!

• Even in Arduino, may not be fast enough

Time-critical input/output: hardware timer/counters

• Timer/Counters: low cost and fairly easy

• Useful for real time generation of pulses and frequency
counting on PC

• Several built into the Arduino Uno, Mega etc., can be
configured for different jobs

• As the 8254, available on boards that simply slot into
back of PC, but are slightly different from those on
Arduino

• Other more specialist counters are available e.g. HCTL
2022, LS7366R

Time-critical input/output: hardware timer/counters

• We will talk about timer-counter chips in more detail
next time

• They underlie several jobs we will do on the Arduino
e.g., generation “analogue” (PWM) outputs for driving
motors at variable speed

• Will use a specialist timer counter (LS7366R) to
measure and control position of a rotating shaft.

Summary

• Examined briefly how computer works

• Explored circuitry used in digital logic: TTL, CMOS,
push-pull, open collector

• Examined the need for interfaces to get digital data
onto and off the data bus

• Examined simple input/output interfaces

• Explained why simple interface no good for counting
events or measuring frequencies, and hence the need
for timer-counters

	Slide 1: Mechatronics MMME3085
	Slide 2: Objectives of lecture
	Slide 3: A typical Mechatronics System
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Types of Signals
	Slide 7: Types of signal
	Slide 8: Types of signal
	Slide 9: Digital Signal
	Slide 10: Digital signals
	Slide 11: Digital signals
	Slide 12: Digital signals: TTL
	Slide 13: Digital signals: Other standards
	Slide 14: Digital signals: Other standards
	Slide 15: Digital signals: Other standards
	Slide 16: Digital signals: Converting between standards
	Slide 17: Digital signals: Converting between standards
	Slide 18: Digital Signal
	Slide 19: Digital signals: Converting between standards
	Slide 20: Digital signals: Converting between standards
	Slide 21: Digital signals: Converting between standards
	Slide 22: Digital signals: Converting between standards
	Slide 23: Digital Signal
	Slide 24: Digital signals: logic gates in practice
	Slide 25: Digital signals: logic gates in practice
	Slide 26: TTL totem-pole (push-pull) output
	Slide 27: TTL totem-pole (push-pull) output
	Slide 28: CMOS push-pull output
	Slide 29: TTL open-collector
	Slide 30: TTL open-collector
	Slide 31: But we still have two important questions!
	Slide 32: How a computer works!
	Slide 33: Some terms (by popular request!)
	Slide 34: Architecture of simple computer
	Slide 35: Architecture of simple computer
	Slide 36: Architecture of simple computer
	Slide 37: So how do we connect into this?
	Slide 38: How a computer works!
	Slide 39: Simple parallel I/O on a PC or microprocessor
	Slide 40: Simple parallel I/O on a PC or microprocessor
	Slide 41: Simple parallel I/O on a PC or microprocessor
	Slide 42: Equivalent behaviour of tri-state buffer output
	Slide 43: Equivalent behaviour of tri-state buffer output
	Slide 44: Equivalent behaviour of tri-state buffer output
	Slide 45: Simple digital input using tri-state buffer (e.g., 74244)
	Slide 46: Simple digital input using tri-state buffer (e.g., 74244)
	Slide 47: Simple digital input using tri-state buffer (e.g., 74244)
	Slide 48: Simple digital input using tri-state buffer (e.g., 74244)
	Slide 49: How a computer works!
	Slide 50: Simple digital output using a latch (e.g. 74373)
	Slide 51: Simple digital output using a latch (e.g. 74373)
	Slide 52: Simple digital output using a latch (e.g., 74373)
	Slide 53: Simple digital output using a latch (e.g., 74373)
	Slide 54: Simple digital output using a latch (e.g., 74373)
	Slide 55: Practical input/output devices
	Slide 56: Practical input/output devices: Arduino
	Slide 57: Input/output ports on the Arduino
	Slide 58: Practical input/output devices: Arduino Uno
	Slide 59: Practical i/o devices: Arduino Mega
	Slide 60: Simple digital input on the Arduino
	Slide 61: Simple digital input on the Arduino
	Slide 62: Simple digital input on the Arduino
	Slide 63: Example: simple digital input
	Slide 64: Simple digital output on the Arduino
	Slide 65: Example: our old friend “Blink”
	Slide 66: More advanced input/output
	Slide 67: More advanced input/output
	Slide 68: Simple digital input on the Arduino
	Slide 69: What are registers?
	Slide 70: What are registers?
	Slide 71: Example: Blink using registers
	Slide 72: Example: Blink using registers
	Slide 73: Example: Blink using registers
	Slide 74: Does it really matter?
	Slide 75: Simple digital input on the Arduino
	Slide 76: First, the “easy” way to blink as fast as possible
	Slide 77: Now using direct register access
	Slide 78: Now using direct register access
	Slide 79: Hardware timer/counters
	Slide 80: Real-time input/output on non-RT system: hardware timer/counters
	Slide 81: Shortcomings of software-controlled input/output
	Slide 82: Time-critical input/output: hardware timer/counters
	Slide 83: Time-critical input/output: hardware timer/counters
	Slide 84: Summary

